If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11p^2-6000p-32500=0
a = 11; b = -6000; c = -32500;
Δ = b2-4ac
Δ = -60002-4·11·(-32500)
Δ = 37430000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{37430000}=\sqrt{10000*3743}=\sqrt{10000}*\sqrt{3743}=100\sqrt{3743}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6000)-100\sqrt{3743}}{2*11}=\frac{6000-100\sqrt{3743}}{22} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6000)+100\sqrt{3743}}{2*11}=\frac{6000+100\sqrt{3743}}{22} $
| 7=14x-9x | | 30=6/5t | | 50°+2x=180° | | -8=3x-18 | | 20=10/3t | | Y-7=5y-8 | | 9+3z=45 | | 12=n+1 | | (1+x)^15-1=1.8 | | x+(100/x)=110 | | 2x+30=22-x | | -2w+6=14 | | 1/2x+5=4+1/2x | | 18-5d=3d-6=24 | | 18-5d=3d-624 | | (2x+60)+(3x+10)=180° | | 25x^2–1=0 | | 3^(2x+1)+4.3^(2x)=27 | | 10y+3=51 | | X+11=2x+23 | | 3x–1=87 | | 5x2+8=508 | | Y-4=6+2y | | 4x/3-(x-1/2)=5/4 | | 6^2x-3=9x | | x-4÷8=15 | | -5+2b/3=3 | | 20t/3=40 | | x+5/x=2x/x-4 | | 3b/2+1/3=2b/3+16/3 | | 2m+3=31 | | 3b/2+1/3=2b/2+16/3 |